Model-based Recursive Partitioning With Adjustment For Measurement Error

Thảo luận trong 'Học tập' bởi eb2025, 23/5/2024.

  1. eb2025

    eb2025 Thành viên kỳ cựu

    Tham gia:
    20/5/2024
    Bài viết:
    6,001
    Đã được thích:
    0
    Điểm thành tích:
    86
    Click Here to Download: https://ouo.io/EEWzsM
    [​IMG]
    Model-Based Recursive Partitioning with Adjustment for Measurement Error
    Applied to the Cox’s Proportional Hazards and Weibull Model
    By: Hanna Birke
    Publisher:
    Springer Spektrum
    Print ISBN: 9783658085049, 3658085045
    eText ISBN: 9783658085056, 3658085053
    Copyright year: 2015
    Format: PDF
    Available from $ 84.99 USD
    SKU 9783658085056
    Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econometric) studies, for instance, when measuring blood pressure or caloric intake per day. After an introduction into the background, the extended methodology is developed in detail for the Cox model and the Weibull model, carefully implemented in R, and investigated in a comprehensive simulation study.
     

    Xem thêm các chủ đề tạo bởi eb2025
    Đang tải...


Chia sẻ trang này