Multiscale Forecasting Models

Thảo luận trong 'Học tập' bởi libgeee, 23/5/2024.

  1. libgeee

    libgeee Thành viên kỳ cựu

    Tham gia:
    20/5/2024
    Bài viết:
    6,277
    Đã được thích:
    0
    Điểm thành tích:
    86
    Click Here to Download: https://ouo.io/ZmHZXAX
    [​IMG]
    Multiscale Forecasting Models
    By: Lida Mercedes Barba Maggi
    Publisher:
    Springer
    Print ISBN: 9783319949918, 3319949918
    eText ISBN: 9783319949925, 3319949926
    Copyright year: 2018
    Format: EPUB
    Available from $ 129.00 USD
    SKU 9783319949925
    This book presents two new decomposition methods to decompose a time series in intrinsic components of low and high frequencies. The methods are based on Singular Value Decomposition (SVD) of a Hankel matrix (HSVD). The proposed decomposition is used to improve the accuracy of linear and nonlinear auto-regressive models. Linear Auto-regressive models (AR, ARMA and ARIMA) and Auto-regressive Neural Networks (ANNs) have been found insufficient because of the highly complicated nature of some time series. Hybrid models are a recent solution to deal with non-stationary processes which combine pre-processing techniques with conventional forecasters, some pre-processing techniques broadly implemented are Singular Spectrum Analysis (SSA) and Stationary Wavelet Transform (SWT). Although the flexibility of SSA and SWT allows their usage in a wide range of forecast problems, there is a lack of standard methods to select their parameters. The proposed decomposition HSVD and Multilevel SVD are described in detail through time series coming from the transport and fishery sectors. Further, for comparison purposes, it is evaluated the forecast accuracy reached by SSA and SWT, both jointly with AR-based models and ANNs.
     

    Xem thêm các chủ đề tạo bởi libgeee
    Đang tải...


Chia sẻ trang này