Link Download ebook Free: https://ouo.io/5wVeWas Néron Models and Base Change By: Lars Halvard Halle; Johannes Nicaise Publisher: Springer Print ISBN: 9783319266374, 3319266373 eText ISBN: 9783319266381, 3319266381 Copyright year: 2016 Format: EPUB Available from $ 49.99 USD SKU 9783319266381 Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.