Strong Rigidity Of Locally Symmetric Spaces. (am-78), Volume 78

Thảo luận trong 'Học tập' bởi eb2025, 26/5/2024.

  1. eb2025

    eb2025 Thành viên kỳ cựu

    Tham gia:
    20/5/2024
    Bài viết:
    6,001
    Đã được thích:
    0
    Điểm thành tích:
    86
    Click Here to Download: https://ouo.io/Bxmoyfe
    [​IMG]
    Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78
    By: G. Daniel Mostow
    Publisher:
    Princeton University Press
    Print ISBN: 9780691081366, 0691081360
    eText ISBN: 9781400881833, 1400881838
    Copyright year: 1974
    Format: PDF
    Available from $ 75.00 USD
    SKU 9781400881833
    Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls strong rigidity: this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is pseudo-isometries; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.
     

    Xem thêm các chủ đề tạo bởi eb2025
    Đang tải...


Chia sẻ trang này