Download eBook Free: https://ouo.io/RB8liS0 Vektorbündel Vom Möbius-Bündel bis zum J-Homomorphismus By: Karlheinz Knapp Publisher: Springer Spektrum Print ISBN: 9783658031138, 3658031131 eText ISBN: 9783658031145, 365803114X Copyright year: 2013 Format: PDF Available from $ 49.99 USD SKU 9783658031145 Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte. Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines Loches hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.